Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667658

RESUMO

The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.

2.
AAPS PharmSciTech ; 19(1): 12-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28895106

RESUMO

The choice of excipients constitutes a major part of preformulation and formulation studies during the preparation of pharmaceutical dosage forms. The physical, mechanical, and chemical properties of excipients affect various formulation parameters, such as disintegration, dissolution, and shelf life, and significantly influence the final product. Therefore, several studies have been performed to evaluate the effect of drug-excipient interactions on the overall formulation. This article reviews the information available on the physical and chemical instabilities of excipients and their incompatibilities with the active pharmaceutical ingredient in solid oral dosage forms, during various drug-manufacturing processes. The impact of these interactions on the drug formulation process has been discussed in detail. Examples of various excipients used in solid oral dosage forms have been included to elaborate on different drug-excipient interactions.


Assuntos
Excipientes/química , Administração Oral , Cápsulas , Composição de Medicamentos , Estabilidade de Medicamentos , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...